
International Journal of Thermal Sciences 47 (2008) 730–741
www.elsevier.com/locate/ijts

Onset of natural convection in a rotating fluid layer with non-uniform
volumetric heat sources

Sourav Chatterjee a, Tanmay Basak b, Sarit K. Das a,∗

a Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India
b Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India

Received 9 January 2007; received in revised form 2 July 2007; accepted 2 July 2007

Available online 9 August 2007

Abstract

A study of the thermal instability in an initially quiescent liquid, placed between two horizontal plates, irradiated by a volumetric heat source,
and subject to rotation about the vertical axis is carried out. The eigenvalue problem is solved using Chebyshev pseudospectral methods employing
the basis recombination technique for higher order problems. The effect of the orientation of the heat source, as well as boundary conditions on
the onset of natural convection is studied for different rotation rates. Rotation is seen to unconditionally increase the stationary stability in all
cases. Our results indicate a linear relationship between critical Rayleigh number and Taylor number at moderate values of Taylor number, and
also show that convection in rotating fluid layer is more sensitive to the exact nature of the heat source distribution in case of stable and quasi
stable temperature profiles.
© 2007 Published by Elsevier Masson SAS.
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1. Introduction

Thermal convection in rotating, internally heated fluid layers
is of great interest in the microwave heating of liquids [1,2]. The
most important and widespread application of microwave heat-
ing is in the domestic microwave oven. Microwave heating also
finds application in the food industry such as in pasteurization,
sterilization etc. A study of internally heated, rotating convec-
tion processes is also relevant in understanding the dynamics of
atmospheric convection in the stars and the major planets [3].

Natural convection due to internal volumetric heat sources
has been studied both experimentally [4,5] and numerically
[6–12]. Sparrow et al. [6] investigated the generic case of ther-
mal instabilities in a fluid layer with non-linear temperature
profile. Thermal stability in the case of uniform volumetric heat
source was studied by Kulacki and Goldstein [7] for a range
of boundary conditions using both the linear stability theory
and the energy stability theory. Stability of convection due to
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non-uniform volumetric heat sources was studied by Yucel and
Bayazitoglu [8] and they considered an exponentially decay-
ing heat source generation. They also carried out similar in-
vestigations [9] on fluid layers with free surfaces. Sorour and
Hassab [10] studied transient thermal stability in fluid layers
with non-uniform heat sources. Stability with non-uniform heat
sources as well as unequal surface temperatures have been stud-
ied by Hassab [11].

In the earlier literature [4–11], the expression for power
source intensity as well as boundary conditions were quite com-
plicated and the explicit effects of heat source distributions were
not studied in detail. A study on the effect of heat source dis-
tributions in convection with a special emphasis on exponential
heat sources was done by Tasaka and Takeda [12]. However,
the system in this case was stationary. The present study ex-
tends this work [12] to the case of rotating fluid layers and also
investigates the effect of various thermal boundary conditions.

The effect of rotation in Rayleigh Benard convection was
one of the earliest interests of Chandrasekhar [13,14]. Chan-
drasekhar studied the effect of rotation in a series of papers
[13,14] and the results are described in detail on his comprehen-
sive treatise for hydrodynamic stability [15]. However, Chan-
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Nomenclature

γ horizontal wavenumber
γx wave number in the x-direction
γy wave number in the y-direction
cp specific heat
D derivative with respect to z-direction
g acceleration due to gravity vector
L height of fluid layer
N number of collocation points
p pressure
Pr Prandtl number
Q volumetric heat source
R Rayleigh number
T temperature
�T temperature difference between the maximum and

minimum temperatures occurring in a distribution
Ta Taylor number
t time
u velocity vector
w velocity in the z-direction
z co-ordinate in the vertical direction
z′ height at which maximum temperature is reached

Greek symbols

β bulk modulus

ε, η characteristic length of the heat source distribution
θ Chebyshev polynomial
κ thermal diffusivity
λ thermal conductivity
μ viscosity of fluid
ξ vertical component of vorticity
ρ density
σ temporal growth rate of perturbations
� rotation vector
Ω speed of rotation
ψ trial function

Subscripts

j j th polynomial
0 properties at T ∗ = T1
C critical value
I internal

Superscripts
∗ dimensional variable
� stationary valuê separated variable in perturbed value which is a

function of z
′ perturbed value
drasekhar’s investigation was confined to classical Rayleigh
Benard convection without any volumetric heat generation.
Veronis [16] studied cellular patterns in rotating convection.
Rotating convection in two and three dimensions were studied
numerically using Galerkin methods by Clever and Busse [17].

A significant amount of literature has been devoted on the
stability of convection due to internal heat sources. A limited
number of works [18,19] on stability of horizontal fluid lay-
ers under the dual effect of rotation and internal heat genera-
tion are also available in the literature. Although earlier works
[18,19] deal with convection in rapidly rotating spheres with
uniform internal heating, but the problem of convection in ro-
tating systems with spatially non-uniform heat sources has been
overlooked. One of the reasons may be because of the numer-
ical complications involved, since, as it shall be seen later, the
resulting differential equation, with the inclusion of rotation,
becomes eighth order, and hence a numerical solution to the
problem becomes increasingly difficult. A remark may be made
here that studies on the dual effect of rotation and internal heat
generation are important as the momentum and energy balance
equations are coupled and the effect of the two factors cannot
be independent on each other.

The objective of the present investigation is to analyze the
stability criteria of a horizontal fluid layer undergoing rotation,
irradiated by an internal heat source. We consider various ori-
entations of the heat source and their effects on the onset of
cellular convection in the rotating horizontal layer subject to
different boundary conditions. The prime interest of the present
work is on applications such as microwave heating with expo-
nential heat sources. Convection due to microwave heating with
top and bottom incidences may be a classic example of internal
heat sources as studied by earlier researchers [20,21]. It may be
noted that microwave heat sources, for the special case of large
depths, behave as an exponentially decaying heat source. This
formulation of the microwave heat source is known as the Lam-
bert’s law and has been applied in studying microwave heating
in many cases [1,22,23]. In fact, Lambert’s law is valid for sam-
ples thicker than three times the characteristic depth [24].

2. Problem formulation

The flow in a horizontal fluid layer of height L kept between
two parallel plates is considered as shown in Fig. 1. The fluid
layer is undergoing rotation about the z-axis and is irradiated
by an internal heat source Q(z∗). The fluid is enclosed by rigid
boundaries, both at the top and the bottom. Two cases of ther-
mal boundary conditions have been considered. Initially, we in-
vestigate the condition when the upper boundary is at a constant
temperature and the lower boundary is adiabatic. The other sit-
uation with the upper and the lower boundaries at the same
constant temperature T1 has also been studied. The schematic
is shown in Fig. 1. The governing equations are

∇u∗ = 0 (1)

ρ0

(
∂u∗

∂t∗
+ (u∗.∇)u∗

)
= −∇(

p∗ − 1/2ρ0(� × r∗)2)
− 2ρ0� × u∗ − ρg + μ�u∗ (2)



732 S. Chatterjee et al. / International Journal of Thermal Sciences 47 (2008) 730–741
Fig. 1. Schematic of the physical system with two sets of boundary conditions
at the bottom:adiabatic and isothermal.

ρ0cp

[
∂T ∗

∂t∗
+ (u∗.∇)T ∗

]
= λ�T ∗ + Q(z∗) (3)

where � = ∂

∂x∗2 + ∂

∂y∗2 + ∂

∂z∗2 .
The no slip boundary conditions have been applied at the top

and the bottom wall.
The physical quantities have been non-dimensionalized in

the usual way. It may be noted that the non-dimensional tem-
perature is expressed as T = T ∗

�T
, where �T is a function of

the power source distribution (and of the boundary conditions).
Consistency has been maintained by defining �T as the max-
imum temperature difference obtained in the base state for the
particular heat source distribution considered.

In the basic state, the system is static, i.e. u = 0 and the
temperature distributions for the various arrangements of heat
sources can be obtained by solving the simple differential equa-
tion

λ
∂2T ∗

∂z∗2
= −Q(z∗) (4)

The study the stability of this flow is carried out using the
method of small linear perturbations.

Performing normal mode expansion of each small perturba-
tion in the form:[

u′
p′
T ′

]
=

[
û(z)

p̂(z)

T̂ (z)

]
exp

(
i(γxx + γyy) + σ t

)
(5)

The following perturbation equations have been arrived at:

(D2 − γ 2 − σ)T̂ = −∂T̄

∂z
ŵ (6)(

D2 − γ 2 − σ

Pr

)
ξ̂ = −√

TaDŵ (7)(
D2 − γ 2 − σ

Pr

)
(D2 − γ 2)ŵ − √

TaDξ̂ = RIk
2T̂ (8)

where D ≡ ∂
∂z

and γ =
√

γ 2
x + γ 2

y .

The major non-dimensional parameters are the Prandtl num-
ber (Pr), the Taylor number (Ta), and the Rayleigh number RI ,
where:

Pr = ν

κ0

Ta = 4Ω2

L4
ν2
and RI is the internal Rayleigh number whose definition de-
pends on the configuration of the heat source distribution.

The hydrodynamic boundary conditions are:

ŵ = Dŵ = ξ̂ = 0 at z = 0 and 1 (9)

and the thermal boundary conditions are:

(a)

T̂ = 0 at z = 1 (10)

DT̂ = 0 at z = 0 (11)

(b)

T̂ = 0 at z = 0 and 1 (12)

The following assumption is made for the analysis. In the case
of convection with rotation, the principle of exchange of sta-
bilities does not hold in general, and as Chandrasekhar [15]
remarked, there is no simple analytical criterion to determine
when the principle holds. We shall restrict ourselves to the case
when the principle holds, that is, when convection proceeds
through a stationary instability. Hence, with σ = 0, using the
principle of exchange of stabilities, we arrive at the following
final equation, eliminating both T̂ and ξ̂ :

(D2 − γ 2)3ŵ + TaD2ŵ = −RIk
2 ∂T

∂z
ŵ (13)

This equation is solved with boundary conditions (Eqs.
(9)–(12)).

3. Method of solution

The equations constitute a sixth order system, but as Chan-
drasekhar [15] points out, since it involves boundary conditions
involving ξ̂ (Eq. (9)), the system is effectively eighth order. The
numerical approach used in solving the above system is based
on the pseudospectral discretizations in Chebyshev polynomi-
als [25]. Each variable is expanded in terms of “trial functions”.
For example, we can write ŵ as:

ŵ =
∑

ajΨj (14)

In order to make the system symmetric about z = 0, the co-
ordinates have been shifted to make the solution domain from
z = −0.5 to z = 0.5.

Since, in case of higher order problems, the derivatives of
the Chebyshev polynomials oscillate near the end point with
high amplitude, the basis recombination technique is employed,
choosing the trial functions as suggested by Boyd [25], using
the “Heinrichs” basis.

Using the “Heinrichs” basis, the trial functions for ŵ have
been chosen as:

ψj = (0.25 − z2)2θj (15)

It can be clearly seen that these trial functions, obtained by basis
recombination automatically satisfy the homogeneous bound-
ary conditions for ŵ (Eq. (9)) in the shifted co-ordinate system.
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The trial function for ξ̂ and for T̂ (when the boundary con-
dition is that of constant temperature both above and below) is

ψj = (0.25 − z2)θj (16)

In the adiabatic case, the trial function for T̂ becomes

ψj = (0.5 − z)θj (17)

and the adiabatic boundary condition is imposed numerically.
Discretizing the variables in terms of trial functions, the solu-
tions are obtained for N collocation points. This results in an
N × N matrix eigenvalue problem of the form

AX = RI BX (18)

the solution of which yields the critical Rayleigh number.
This eigenvalue problem is solved by the usual Q–Z algo-

rithm. The complete details of the numerical procedure to con-
struct and solve the above problem can be found in Boyd [25].
Convergence of the solution was investigated by varying the
number of collocation points. A change of N beyond 25 does
not produce significant changes in the critical Rayleigh number.
Hence, N was fixed at 25.

4. Validation

In order to establish the accuracy of the Chebyshev pseudo-
spectral scheme, comparison with the results of previous studies
were made. In the case of classical Rayleigh Benard convection
with rotation, our scheme predicted results which are in excel-
lent agreement with those of Chandrasekhar [15]. The compar-
ison of the results is listed in Table 1.

The present scheme has also been validated with earlier
work by Tasaka and Takeda [12] who investigated the onset of
convection in horizontal fluid layers irradiated by exponential
heat sources. In case of uniform volumetric heat sources, our
scheme predicts the value of the critical Rayleigh number as
1378.34, which is quite close to the value (RIC = 1386.14) pre-
dicted by Roberts [26] (the definition for the internal Rayleigh
number by Roberts [26] is twice that of current work and hence
the value was 2772.8 [26] in an identical study). The agreement
of these results substantiates the applicability of the Chebyshev
pseudo spectral method for determining the conditions leading
to the onset of convective motions in a liquid layer.

Table 1
Comparison of the present work with Chandrasekhar [15]

Taylor
number

Chandrasekhar Present work

γC RIC γC RIC

10 3.1 1713 3.1 1711.9
100 3.15 1756.6 3.15 1756.4
500 3.3 1940.5 3.3 1939.9

1000 3.5 2151.7 3.5 2150.6
2000 3.75 2530.5 3.75 2529.4
5000 4.25 3468.6 4.25 3463.8

10 000 4.8 4713.1 4.79 4712.1
30 000 5.8 8326.4 5.78 8324.5

100 000 7.2 16 721 7.18 16 716

γC represents the critical wave number and RIC the critical Rayleigh number.
5. Results and discussion

5.1. Adiabatic boundary conditions

The effect of rotation is investigated mainly in three cases of
heat source orientation:

1. Uniform heat source i.e. Q = Q0.
2. An exponentially decaying heat source applied from the

bottom boundary

Q = Q0

H(ε)
exp

(−z

ε

)
(19)

where

H(ε) =
1∫

0

exp

(−z

ε

)
dz = ε

[
1 − exp

(−1

ε

)]
(20)

Here ε is the characteristic length of the heat source distribution
when applied from below. A decrease in ε implies the concen-
tration of heat source at the bottom boundary.

Maintaining consistency with Eq. (13), the internal Rayleigh
number in this case is defined as in Tasaka and Takeda [12],

RI = gβQ0L
5

λν0κ0

ε2

H(ε)

[
exp

(
−1

ε

)
+ 1

ε
− 1

]
3. An exponentially decaying heat source applied from the top

boundary

Q = Q0

H(η)
exp

(
z − 1

η

)
(21)

where

H(η) =
1∫

0

exp

(
z − 1

η

)
dz = η

(
1 − exp

(
−1

η

))
(22)

η denotes the characteristic length of the heat source distrib-
ution when applied from above, and a decreasing η implies
increased concentration of the heat source at the top boundary.
In this case, the internal Rayleigh number is defined as [12]:

RI = gβQ0L
5

λν0κ0

η2

H(η)

[
1 −

(
1 + 1

η

)
exp

(
−1

η

)]
These configurations have been studied in detail for the sta-
tionary case by Tasaka and Takeda [12], and for a detailed
discussion on the temperature profiles, perturbation equations
on temperature and other details, the reader is directed to the
above reference. Our main interest is to study the effect of rota-
tion on the stability in these heat source configurations.

The variation of critical Rayleigh number with ε or η is
shown in Fig. 2. Trends observed for the variation of RIC with
ε are similar to the static case, with the Rayleigh number pro-
ceeding asymptotically towards its critical value in the case of
the uniform heat flux. When the heat flux is applied from above
(variation with η) the sharp asymptotic variation is seen in all
cases, and seems to increase with increasing Taylor number.
This is further elaborated in the next section.
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Fig. 2. The variation of critical Rayleigh number with ε or η for different values of Taylor number. The variation with ε is for the case when the heat source is
applied from below, and the variation with η is for the case when the heat source is applied from above.
5.1.1. Linear RI –Ta relationship
The effect of heat source distribution on the evolution of

Rayleigh number with Taylor number has been investigated.
Chandrasekhar [15] showed that at the asymptotic limit, the
Rayleigh number scales as Ta2/3. We have however, confined
our investigations to moderate Taylor numbers, and find that in
this range, the RIC–Ta curve appears as a straight line as seen
in Fig. 3. The linearity trend is unaffected by the orientation
of the heat source distribution ,the value of the exponents and
the nature of boundary conditions. Thus these detailed analyses
help us to arrive at a very important conclusion, that the RIC–Ta
profile for moderate Taylor numbers is linear and this trend is
independent of the nature of the heat source distribution and
boundary conditions.

5.1.2. Effect of rotation
The slope of the RI –Ta curve gives us important information

on how rotation affects the stability of the system in various heat
source configurations. Fig. 4 illustrates the slope of the RIC–Ta
curve as a function of the exponent (ε or η). It is interesting to
note that the slope of the curve has only minor variation with
change in ε, in the case of exponential heating from the bot-
tom. Also, this slope is quite close to the value for the case of
uniform heat distribution. However, when the exponential heat
source is applied at the top, there is a distinct change in slope,
depending on the value of η. The slope is larger for smaller
values of η, and slope decreases asymptotically as η increases,
towards the uniform heat distribution case. The steeper slopes
at low η clearly indicate that rotation has a stronger effect on
the stability of convection at low η.
The influence of rotation on temperature profiles has been
discussed next. The temperature profile for both the cases is
shown in Fig. 5. While the heat source at the bottom produces a
distribution, which has a small negative slope for all values of ε,
the concentration of heat source at the top is seen to give rise
to a large region where the temperature is nearly constant. This
zone leads to a high degree of stability, and has been termed as
the “quasi-stable layer” by Tasaka and Takeda [12]. It may be
noted that rotation leads to a greater stability of the fluid layer,
and the quasi stable zone is seen to enhance this stability. Thus
as the temperature gradient of the quasi-stable layer decreases,
it enhances the rotation induced stability to a greater extent,
leading to steeper slopes.

It may thus be concluded that in the absence of quasi stable
layers, the stability of the rotating system is not very sensitive
to the exact nature of the heat source distribution. Rotational
effects become highly sensitive to the temperature profile, only
when layers with very low temperature gradients are present.
This is further elaborated in the next section.

Figs. 6 (a) and (b) show the variation of critical wave num-
ber with the rate of rotation. The critical wave number is seen to
increase with rotation rates, indicating an increase in the size of
the convection cells with rotation. However, the change in crit-
ical wave number with the configuration of the heat source dis-
tribution is similar to the static case in Tasaka and Takeda [12].
When the heat source is applied from the bottom, the wave
number remains close to its value for an uniform heat source
distribution (within 2% in the static case) and low values of η

produce a significant deviation (about 14% in the static case)
when the heat source concentration is at the top.
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Fig. 3. Linear RI –Ta relationship for moderate Taylor numbers (1000–5000), for different orientations of the heat source, both for the adiabatic and the constant
temperature boundary conditions.

Fig. 4. Slope of the RI –Ta curve (
dRIC
dTa

) plotted against the exponents, showing the effect of heat source distribution on rotating convection.
5.2. Constant temperature boundary condition

In the earlier section, the heat transfer at the bottom bound-
ary was neglected. In this section, we consider the situation
where both boundaries are at constant temperatures. Microwave
ovens with both the top and the bottom surfaces exposed to
the atmosphere can be considered to be a realistic application
of this. It may also be noted that since we have imposed a
boundary condition of temperature T1 at both the boundaries,
the onset of convection, here is thus, purely through inter-
nal heat generation, and there is no effect of wall heating, as
such. Thus, the effect of internal heating, independent of the
effects of wall heating on the convective stability has been stud-
ied.
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(a)

(b)

Fig. 5. Temperature profiles for the two cases (a) exponential heat flux from the bottom, (b) exponential heat flux from the top.
5.2.1. Exponentially decaying heat source from the bottom
When exponential heat source is applied from the bottom,

a solution of the mean state energy equation leads to the fol-
lowing temperature distribution:

T ∗ − T1 = 1
[
z exp

(−1
)

− exp

(−z
)

+ 1 − z

]
(23)
�T G(ε) ε ε
where

G(ε) = 1 −
(

1 + z′

ε

)
exp

(−z′

ε

)
(24)

Here, z′ is the height where the maximum temperature is
reached. The expression for z′ reads:

z′ = −ε

[
ln ε + ln

{
1 − exp

(
−1

)}]
(25)
ε
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(a)

(b)

Fig. 6. (a) The variation of critical wave number with Taylor number for different ε. (b) The variation of Critical Wave number with Taylor number for different η.
The maximum temperature variation, used to non-dimension-
alize the temperature, is given as:

�T = Q0L
2ε2

λH(ε)
G(ε)

The temperature profile is shown in Fig. 7, for different values
of ε, and the shape of the distribution for uniform heat source
distribution is given as a comparison. A stable layer is seen to
form in this case, the consequences of which shall be elaborated
on later.

This mean temperature distribution gives the following
equation for perturbation:
(D2 − γ 2)T̂ = −1

G(ε)

[
1

ε
exp

(−z

ε

)
− 1 + exp

(−1

ε

)]
ŵ (26)

In this case, the internal Rayleigh number is defined as:

RI = gβQ0L
5η2

νκ0λH(ε)
G(ε)

The variation of critical internal Rayleigh number with ε is
shown in Fig. 8 for different values of Taylor number. The val-
ues show the same general trend, however with increased values
of the critical Rayleigh number. The critical Rayleigh number
for ε = 0.2 is 1771, which is more than the critical Rayleigh
number for simple Rayleigh Benard convection (1707.8). While
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Fig. 7. Temperature profiles when heat flux is applied from the bottom, and the same constant temperature is maintained at both the surfaces.

Fig. 8. Evolution of Rayleigh numbers with ε in the constant temperature boundary condition case. Heat source is concentrated at the bottom.
on the other hand, in the case of adiabatic boundaries, an expo-
nent of 0.2 produces RI much lower than that of simple RBC.

Thus it can be seen that the advantages of using an internal
heat generation is dependent to a large extent on the boundary
conditions used. In the limit of a constant temperature boundary
condition, Rayleigh Benard convection seems to be less proba-
ble.
5.2.2. Exponentially decaying heat source from the top
This configuration of the heat source gives rise to the follow-

ing temperature profile:

T ∗ − T1

�T
= 1

G(η)

[
exp

(
z − 1

η

)
− z + (z − 1) exp

(−1

η

)]
(27)
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Fig. 9. Temperature profiles when heat flux is applied from the top, and the boundary condition is of constant temperature.
where

G(η) =
(

1 − z′

η

)
exp

(
z′ − 1

η

)
− exp

(−1

η

)
(28)

In this case

z′ = η lnη + η ln

[
1 − exp

(−1

η

)]
+ 1 (29)

The shape of the temperature profile is plotted in Fig. 9 and the
maximum temperature difference

�T = Q0L
2η2

λH(η)
G(η)

The expression for the internal Rayleigh number is:

RI = gβQ0L
5η2

νκ0λH(η)
G(η)

Finally, we derive the perturbation equation for the temperature
as:

(D2 − γ 2)T̂ = −1

G(η)

[
1

η
exp

(
z − 1

η

)
− 1 + exp

(−1

η

)]
ŵ

(30)

The above equation is solved for different values of the Taylor
number, and the results are plotted in Fig. 10. An asymptotic
rise at small values of η leads to exceptionally high values
of RIC .

5.2.3. Effect of rotation
The base temperature profiles in both cases are seen to give

rise to stable layers with positive temperature gradients. This
is one of the fundamental differences of this case with the pre-
vious adiabatic case, where there was, at best quasi-stable lay-
ers.
The slope of the RIC–Ta curve has been plotted with the ex-
ponents as before (Fig. 11). However, in this case, we see a
marked difference from the previous case. Rotation seems to be
sensitive to both cases of exponential profiles, and more or less
to the same extent. In this context, it may be noted that quasi-
stable layer in the temperature profiles for both cases of heat
source distribution exist, as shown in Figs. 7 and 9. Hence, one
can extend the previous argument to note that stable layers with
positive temperature gradients enhance the stabilizing effect of
rotation.

Fig. 12 shows the change in critical wave numbers with ro-
tation rates. The general trend of increase in the size of the
convection cell with rotation is observed here also. Also, note
that while in the adiabatic case, there were only slight changes
in wave number with ε (while there was a large change in size
with change in η) [12], in this case, both the changes in ε and
η cause a significant change in the wave number, at all rotation
rates (20.13% for change in ε, and 47.13% for change in η, in
the static case). However, heat source concentration at the top
causes a much greater increase in the wave number this case
also, as before.

6. Conclusion

A systematic study of the stability criterion of rotating hori-
zontal fluid layers with internal heat generation has been carried
out for various boundary conditions and heat source orienta-
tions, using the Chebyshev pseudospectral methods. The results
have been presented in terms of critical Rayleigh number and
wave number. From this wide ranging study, it can be concluded
that:

1. The RIC–Ta relationship is linear for moderate values of
Taylor number, irrespective of the orientation of the heat
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Fig. 10. Rayleigh number variation with η. In this case, the exponentially decaying heat source is applied from the bottom.

Fig. 11. Effect of heat source distributions on rotation rates in case of constant temperature boundary conditions.
source distribution or the imposed thermal boundary con-
dition.

2. The effect of rotation on the stability of the system is highly
sensitive to the orientation of heat source distribution in
case of stable and quasi stable temperature profiles.

3. In cases where the resulting temperature profiles do not
consist of stable or quasi stable layers, the effect of rotation
is merely to stabilize the temperature profile, to a similar
extent for various heat source configurations.
With the present study, it has been possible to clarify the cou-

pled effects of rotation and internal heat generation in affecting

the stability of thermal convection. Keeping in mind, the exten-

sive uses of such convection processes, especially in the food

and pharmaceutical industry, this study would go a long way in

deciding the different operating parameters in such processes,

such as rotation, the strength and the orientation of the heat

source.



S. Chatterjee et al. / International Journal of Thermal Sciences 47 (2008) 730–741 741
Fig. 12. The variation of critical wave number with Taylor number for different ε or η. The boundary condition imposed is a constant temperature at the ends.
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